

Reconstruction Code
 LArSoft Meeting
Mitch Soderberg
October 15, 2009

1

Intro

2

•We’ve been discussing what to do about Reconstruction code for a few
months...need to make some decisions and start coding.
•Before we jump into coding algorithms for new objects (tracks, showers,
etc...), we need to discuss the definition and function of the objects that
make up the Reconstruction classes.
‣We don’t want to have to redo all of this 6 months from now!

‣Generic Issues:
✦What are the basic Reconstruction classes we think we need?

✦How should these classes be implemented within the FMWK/LArSoft framework?

✦What data members/methods are desired for the various classes?

✦How is the class information accessed by users and other pieces of code?

•Tangents not specific to Reconstruction:
‣How will people actually access data and run jobs?

‣What other items are in need of discussion?

Reconstruction

3

•Reconstruction refers to all the tools we use to identify and characterize
the important features of our raw data.
•Our algorithms for identifying these features will evolve over time, but to
make some coding progress we need to define an initial set of objects that
will contain the relevant information necessary for analysis.
•Creating these classes is not necessarily hard, but we may stick with
them for a long time, so let’s give it some thought.
•“Hit” class is one example of an existing reconstruction class, but it is
still in need of some fine tuning.

Example: NOvA Reconstruction

4

RecoBase Package: Hit Class

5

•Hit class already exists in LArSoft RecoBase package
‣Fairly minimal data members right now (fTotalSignal, fStartTime, fCenterTime, fEndTime,
fTransversePos, fHitSignal, fWireRef)

‣No way to save parameter values (if doing shape fitting type hit-finding).

‣A 2D object as written (i.e. - wire # and hit time are only spatial information).

‣Interface to EventDisplay is pretty simple right now...can overlay Hits, but can’t really do much else with
them (click on them to get info., display their information, etc...). This is more of an EventDisplay issue.

!"#$
% & '% '& (% (&)%

*+
,*
"-
.
/
0

%

(%%

1%%

2%%

3%%

'%%%

'(%%

'1%%

'2%%

'3%%

(%%%

!'%%

!3%

!2%

!1%

!(%

%

(%

1%

2%

+,"-./0
% (%% 1%% 2%% 3%% '%%% '(%% '1%% '2%% '3%% (%%%

+4
5
6/
$
+7
$
"8
9
*+
,:
;
<
0

!'%%

!3%

!2%

!1%

!(%

%

(%

1%

2%

class Hit : public TObject {
 public:
 Hit(); // Default constructor
 Hit(double totsig,
 double startT,
 double centerT,
 double endT,
 double transversePos,
 std::vector<double> signal,
 const recobase::Wire *wire);

 ~Hit();

 // Set Methods
 void SetTotalSignal(double totsig) { fTotalSignal = totsig;}
 void SetStartTime(double startT) { fStartTime = startT;}
 void SetEndTime(double endT) { fEndTime = endT;}
 void SetCenterTime(double centerT) { fCenterTime = centerT;}
 void SetTransversePos(double tPos) { fTransversePos = tPos;}

 // Get Methods
 double GetTotalSignal() const { return fTotalSignal;}
 double GetStartTime() const { return fStartTime;}
 double GetEndTime() const { return fEndTime;}
 double GetCenterTime() const { return fCenterTime;}
 double GetTransversePos() const { return fTransversePos;}
 recobase::Wire *GetWire() const { return dynamic_cast<recobase::Wire *>(fWireRef.GetObject());}
 std::vector<double> fHitSignal;

private:

 double fTotalSignal;
 double fStartTime;
 double fCenterTime;
 double fEndTime;
 double fTransversePos;

 TRef fWireRef;

 ClassDef(Hit, 3) // Hit recobase object
 };

Revising Hit Class

6

•Some time ago I made a first pass at a revised “Hit” Class
‣Constructor now only takes a string (for the HitFinding algorithm/collection name) and a TRef to
the Wire object the Hit was created from.

‣Members: added more members for the details of the hit object (max./min. ADC value, crossing
time, max./min. ADC time sample, MIP equivalent, etc...)

‣Added a vector of TRefs where “linked” Hits can be stored.

‣Added a TRef for a Cluster object that the Hit belongs to.

‣Added a map of <string,double> that can be used to store additional parameters and their values,
as needed by different algorithms

‣Added functions to list/return parameter names/values.

‣Added methods to add/subtract Links/Clusters
✦Link = (a la ICARUS) hits on same/neighboring wire that are close spatially

‣Added Print method.

•Brian pointed out that we might reconsider storing parameter/collection
names with every Hit object...might consider using Header class or some
other database interface.
•These issues will translate to all other RecoBase classes.

Algorithms for Creating Collections

7

•Along with creating RecoBase classes, need to think about how they get filled.
•Initial idea: For every step in the reconstruction chain, there is an object in
the RecoBase package, and a corresponding package with algorithm code.
•Example: for the Hit class I created a package called HitFinder:
‣Contains base class (HitFinder) which handles mundane stuff (fetching desired objects, writing out new objects, etc...)

‣Users create inheriting classes (ExampleHitFinder) which only have to implement a specific algorithm (called FindHit)
for creating the Hit objects.

‣Parameters specific to the individual algorithms can be accessed via XML if user adds necessary code to the Update
function.

‣Better idea? - define a single RecoBase algorithm that generically handles mundane stuff...make all specific algorithms
inherit from this class. Would save the need for individual base classes which are more or less identical, except for their
specific input/output types.

Algorithm RecoBase Object larsoft Package
Deconvolution/Calibration Wire CalData

Hit Finding Hit HitFinder

Segment Finding Segment SegmentFinder

Track Finding Track TrackFinder

Vertex Finding Vertex VertexFinder

Shower Finding Shower ShowerFinder

Event Summary Event EventBuilder

Others Others Others

{Don’t exist
 yet!

Job Flow

8

•This structure cleanly allows for different implementations of a reco.
algorithm (e.g. - FFTHitFinding vs. DifferenceHitFinding) to be run successively on a given event.
•Consider one imaginary job sequence:

Algorithm Input/Output Folders Purpose
Calibrate raw digits/wires1 Create Calibrated Wires

Deconvolute1 wires1/wires2 Perform deconvolution

Deconvolute2 wires1/wires3 Alternative deconvolution

WindowHitFinder wires2/hit1 Find Region of Interest

FFTHitFinder hit1/hit2 Fancier hit finding

SegmentFinder hit2/segment Group hits

MitchTracker segment/track1 Group segments

BrianTracker segment/track2 Group segments

PrimaryVertex track2/vertex Group tracks

ShowerFinder ?/shower Cluster hits/tracks

EventBuilder ?/event Summarize

•Note: FMWK can already do this type of sequencing without all this “base class” stuff....but
implementation of classes is not as compact/clean.

•Question? Do we intend to stick with the “Folder” style of output (i.e. - each new collection
gets put in it’s own ROOT folder). How is this handled when more info. gets added?

New Base Classes?

9

•Can try and copy what other experiments already do....
•Cluster/Prong/Vertex classes not yet in LArSoft
‣A Cluster is a grouping of “related” Hit objects.

‣Definition of the sufficient relation must be defined...can utilize Links from the Hit objects.

‣A Prong is a grouping of “related” Cluster objects.

‣Tracks and Showers are special cases of Prongs....perhaps don’t need their own classes?

‣Vertex is a grouping of “related” Prong objects.

‣ Could follow the same idea implemented in HitFinder...define generic base class for Cluster/Prong/
Vertex finding, then put specific algorithms in inheriting classes?

•There are probably numerous other Reco. classes I have not mentioned
(PMT related objects, etc...).
•I had started to write simple classes for storing P.O.T. information, and
other such run time parameters....not strictly a Reconstruction issue, but
does have some impact and should be part of the discussion.

Tangents

10

•How will people access data and run jobs?
‣We are already having trouble with people running out of disk space, or wanting to know how to
access the ArgoNeuT data.
‣We have BlueArc space in the works, as well as Enstore space, but we don’t really have a scheme
for using it effectively .

‣Do we have any plan for expanding computing resources?

•What other items are in need of discussion?
‣Access to simple databases from within LArSoft would be very useful...I see a little evidence that
there is database related code in FMWK...has anyone ever used it?

‣The EventDisplay program has served us well to this point, but it needs more work before it’s as
useful to non-experts as it could be. (i.e. - clickable objects, more control over the display settings,
better use of space, standardized aspect ratios and the like, etc...).

