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1 Problem

Insulating material used in a gas- or liquid-filled particle detector, such as a gaseous wire
chamber or a liquid-argon time-projection chamber, generally resides in a region of nonzero
(nominally static) electric field. Initially, the electric field inside the insulator is that due to
the “external” electric field E0(x), taking into account the (relative) permittivities (dielectric
constants) of the various materials in the device.1 Cosmic rays, and particles from other
sources such as nuclear reactors and particles accelerators, that pass through the device create
electron-ion pairs whose charges may drift until intercepted by conductors or insulators.
In the latter case, the insulator becomes charged, which perturbs the external field E0.
Discuss whether such perturbations can result in electric fields much larger than E0 inside
the insulators, which might lead to their failure via electric discharges.

This problem was suggested by Bo Yu.

2 Solution

This problem is related to the larger issue of space charge in ionization detectors [1, 2], that
electrons and ions created by passing charged particles move with different drift velocities
leaving a net positive charge in the bulk of the ionization medium. One effect of this resulting
“space charge” is that the external field E0 is reduced in the region close to the anode, both
in the active volume of the detector, and in the surrounding volume. The present problem is
concerned with the latter volume, in which insulators might be placed as part of the support
structure for the active detector volume.

We consider examples of a planar insulator, a circular cylinder insulator, a spherical
insulator, and an elliptic-cylinder insulator, and a rectangular insulator, each in a uniform,
external electric field E0. That is, we ignore here the change in the external field due to
space charge in the ionization medium (such as liquid argon), and instead investigate the
effect of charge accumulation on the insulator.

A general consideration is that as long as electric field lines reach the outer surface of
the insulator, its charging continues. Hence, if there exists a final, static configuration, the
electric field just outside an insulator is then either zero or parallel to its surface.

2.1 Planar Insulator

The case of a planar insulator whose extent is the same as that of the field E0 is straight-
forward, as sketched below.

1The adjective “external” will be applied only to the field E0, while the total field E in the presence of
a conducting or insulating body will be partitioned in the fields exterior and interior to that body.
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If the plane of the insulator is parallel to the field E0, and completely fills the gap of
height D between the electrodes that establish that field, then the field inside the insulator
is also E0, independent of the permittivities of the insulator or the medium surrounding it.
See the middle figure above.

On the other hand, if the plane of the insulator is perpendicular to E0, then positive
charge will accumulate on the upper surface of the insulator, and negative charge on its
lower surface, until the field outside the insulator is zero and charge ceases to flow in the
medium surrounding it.2 See the right figure above. Then, assuming that the potential
difference V0 associated with the external field E0 is unchanged, the steady-state field inside
the insulator has magnitude E = V0/d = E0D/d, where d is the thickness of the insulator.3

For a thin insulator, d � D, the resulting internal field could be very large, which might
lead to failure via electric discharges.

In practice, insulators inside particle detectors are unlikely to be as large as the detector,
so we next consider smaller insulators.

2.2 Circular-Cylinder Insulator

Consider a circular-cylinder insulator of radius a � D, whose axis is perpendicular to the
uniform field E0.

If charge accumulates on this cylinder until a steady state is achieved, the electric field
outside the cylinder will not be zero (as for the planar insulator in the right figure on p. 2),
but rather, the field lines just outside the cylinder will be parallel to its surface, such that
the electrons and ions which flow in the surrounding medium will not reach the cylinder.
The challenge is to deduce the distribution of charge on the cylinder, and the perturbed,
static electric field E that is consistent with this steady-state.

2While positive charge flows onto the upper surface of the insulator, negative charge flows onto the upper
electrode (and similarly positive charge flows onto the lower electrode. These electrodes are assumed to be
conductors held as constant potentials, so charge flows between the “battery” that maintains the potentials
and the electrodes, such that the final charge distribution shown in the right figure above can be achieved.

3The analysis of the steady state does not depend on the relative dielectric constants εI and εA of the
insulator and the liquid argon, respectively. However, the initial field EI inside the insulator (before signifi-
cant charge accumulation) does depend on these for the case on an “infinite” planar insulator perpendicular
to E0. Here, V0 = EId + EA(D − d), and εIEI = εAEA, where EA is the initial field in the liquid argon,
such that the initial field inside the insulator is EI = V0/[D+ (εA/εI − 1)d].
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A clue as to the solution comes from consideration of a related problem, a conducting
circular cylinder in an otherwise uniform electric field. The figure below4 shows the field
lines and equipotential surfaces for the case where the uniform field E0 points to the right.

A famous result of electrostatics in two dimensions is that for any analytic function
f(z) = u + iw of a complex variable z = x + iy, both functions u(x, y) and v((x, y) obey
Laplace’s equation, ∇2u = 0 = ∇2v.5 Also, lines of constant u are orthogonal to lines of
constant v. Hence, u is a possible potential function for some 2-d electrostatics problem,
with lines of constant v corresponding to the electric field lines. And, taking v to be the
potential function, we have a solution to another electrostatics problem, where now lines of
constant u correspond to the field lines.

Thus, in the above figure for the case of a conducting cylinder in an otherwise uniform
electric field, we can interchange the roles of the field lines and the equipotentials to obtain
a solution to a different problem. In the latter problem, we see that the field lines do not
reach the cylinder (except at two points), such that electrons and ions that flow along the
field lines would never reach the cylinder. Hence, this second solution is the solution we
desire for the steady state of a cylindrical insulator in, say, liquid argon.

It remains to deduce the electric field inside the cylinder, which does not immediately
follow from the preceding argument.

For this, we note that in the case of the conducting cylinder, the induced surface-charge
distribution at r = a in a cylindrical coordinate system (r, φ, z) with origin at the center of
the cylinder is, for uniform field E0 = E0 x̂ = E0(r̂ cosφ − φ̂ sinφ),

σ(φ) = 2ε0E0 cos φ (conducting cylinder), (1)

and the electric field associated with this charge distribution is

Eσ = E0

⎧⎪⎨
⎪⎩
(

a
r

)2
(r̂ cosφ + φ̂ sinφ) (r > a),

−x̂ (r < a),
(conducting cylinder), (2)

4From http://web.mit.edu/6.013_book/www/chapter5/5.8.html
5This was noted by Helmholtz in [3] in the context of 2-dimensional fluid flow. See also p. 71 of [4].
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In the problem of the cylindrical insulator we desire that the radial electric field be zero
just outside the cylinder. This is achieved by reversing the sign of the charge distribution
(1),6 which reverses the sign of the electric field (2). Hence, the desired solution is,7

σ(φ) = −2ε0E0 cosφ (insulating cylinder), (3)

and the electric field associated with this charge distribution is,8

Eσ = E0

⎧⎪⎨
⎪⎩

−
(

a
r

)2
(r̂ cos φ + φ̂ sinφ) (r > a),

x̂ (r < a),
(insulating cylinder). (4)

The total electric field for the steady-state solution for the insulating cylinder is

E = E0 + Eσ = E0

⎧⎪⎨
⎪⎩
[
1 −

(
a
r

)2
]
r̂ cos φ −

[
1 +

(
a
r

)2
]
φ̂ sinφ (r > a),

2 x̂ (r < a),
(insulating cylinder). (5)

Hence, the steady-state field inside an insulating cylinder is only double the external field E0

(independent of its radius a so long as this is small compared to D), and electrical discharges
are unlikely in this case. Note that this result is also independent of the dielectric constants
of the insulator and the medium surrounding it.9

2.3 Spherical Insulator

We can build on the solution for a circular-cylinder insulator to discuss the case of a spherical
insulator of radius a � D.

Again we first consider the case of a conducting sphere in the otherwise uniform electric
field E0 = E0 ẑ = E0(r̂ cos θ − θ̂ sin θ) in a spherical coordinate system (r, θ, φ), for which
the induced surface-charge distribution is

σ(φ) = 3ε0E cos θ (conducting sphere), (6)

6Positive charge accumulates on the side of the cylinder that intercepts lines of E0, i.e., the side with
x < 0. The charge distribution (3) has positive charge on this side (and negative charge on the side with
x > 0) as expected.

7The charge densities in eqs. (1) and (3) are those of the total charge at the interface r = a, which consist
of both “free” and “bound” charge, where the latter is associated with the electric dipoles in the dielectric
media, such as liquid argon and the insulator. That is, σ = σfree+σA+σI for the case of an insulator in liquid
argon. In the steady state, the radial field is zero in the liquid argon just outside the insulator, so σA = 0.
The bound charge density on the surface of the insulator, with relative dielectric constant εI , is given by
σI = PI · r̂ = (εI − 1)ε0EI · r̂ = 2(εI − 1)ε0E0 cosφ, using eq. (5), such that σfree = σ − σI = 2εIε0E0 cos φ.
This is the charge density that must accumulate on the insulator to achieve the steady-state.

8Since the total static field inside a conductor is zero, the interior field due to charge density σ is just
−E0. The exterior field is given, for example, in the link of footnote 2.

9We have not needed the initial field strength EI inside the circular-cylinder insulator of relative dielectric
constant εI , when surrounded by a medium of relative dielectric constant εA with initially uniform electric
field E0 in the absence of the insulator, but its value is EI = E0/(εI/εA + 1). See, for example, p. 49 of [5].
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and the electric field associated with this charge distribution is,10

Eσ = E0

⎧⎪⎨
⎪⎩
(

a
r

)3
(2r̂ cos θ + θ̂ sin θ) (r > a),

−ẑ (r < a),
(conducting sphere), (7)

In the problem of the spherical insulator we desire that the radial electric field be zero
just outside the sphere. This is achieved by reversing the sign of the charge distribution (6),
and dividing by 2. Hence, the desired solution is

σ(θ) = −3

2
ε0E cos θ (insulating sphere), (8)

and the electric field associated with this charge distribution is

Eσ = E0

⎧⎪⎨
⎪⎩

−
(

a
r

)3 (
r̂ cos θ + θ̂

2
sin θ

)
(r > a),

ẑ
2

(r < a),
(insulating sphere). (9)

The total electric field for the steady-state solution for the insulating cylinder is

E = E0 + Eσ = E0

⎧⎪⎨
⎪⎩
[
1 −

(
a
r

)3
]
r̂ cos θ −

[
1 + 1

2

(
a
r

)3
]
θ̂ sin θ (r > a),

3
2
ẑ (r < a),

(insulating sphere).(10)

Hence, the steady-state field inside an insulating sphere is only 1.5 times the external field
E0 (independent of radius a so long as this is small compared to D), and electrical discharges
are unlikely in this case. Qualitatively, the steady-state field inside an insulating sphere is
smaller than inside an insulating cylinder because there are more ways for the perturbed
field lines to pass around a sphere than a cylinder, so the desired field perturbation can be
generated by a smaller accumulated charge, which also leads to a smaller field inside the
insulator.

2.4 Elliptic-Cylinder Insulator

The method used to deal with circular cylinders and spheres can be extended to the cases
of elliptic cylinders and ellipsoids, but for this we need to work in appropriate elliptical
coordinate systems. Here, we only consider elliptic cylinders.

One of the first efforts involving elliptic cylinders in electromagnetism was [7],11 although
the axes of the elliptic cylinders were only parallel or perpendicular to the external (magnetic)
field. The case of the axes of a conducting elliptical cylinder at a general angle to the external
field E0 has been treated briefly on p. 1199 of [10], and in problem 433, p. 204 of [11]. A
different approach is illustrated in sec. 4.261 of [12]. We adopt the notation of [11], and
transcribe eq. (10.1.27) of [10] into this.

10The exterior field Eσ(r > a) is the same as that of a point electric dipole, as can be deduced from the
potential, given, for example, in sec. 2.5 of [6].

11Consideration of elliptic cylinders in fluid dynamics may have begun with [8].
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The elliptic cylinder is centered on the origin, with semimajor axis a along the x-axis,
and semiminor axis b along the y-axis. The focal distance is c,

c =
√

a2 − b2, a = c cosh α0, b = c sinhα0. (11)

The external electric field E0 makes angle γ to the x-axis as shown in the figure below [11].

The elliptic-cylinder coordinates (α, β, z) are defined by12

x + iy = c cosh(α + iβ), x = c cosh α cos β, y = c sinh α sinβ. (12)

The hyperbolae of constant β are orthogonal to the ellipses of constant α; the surface of the
physical insulator is at α = α0. Unit vectors α lie along lines of constant β, and vice versa.

The 2-d line element is

ds2 = c2(cosh2 α − cos2 β)(dα2 + dβ2), (13)

from which one infers that the gradient of the electric scalar potential V (α, β) is

∇V =
1

c
√

cosh2 α − cos2 β

(
α̂

∂V

∂α
+ β̂

∂V

∂β

)
, (14)

and that Laplace’s equation for the potential is13

∇2V =
1

c2 (cosh2 α − cos2 β)

(
∂V

∂α2
+

∂V

∂β2

)
= 0. (15)

The external electric field E0 = −E0 x̂ cos γ − E0 ŷ sin γ has potential

V0 = E0(x cos γ + y sin γ) = cE0(coshα cos β cos γ + sinhα sinβ sin γ), (16)

and hence the external electric field can be written in elliptic coordinates as

E0 = −∇V0 = − E0√
cosh2 α − cos2 β

[α̂(sinhα cosβ cos γ + coshα sinβ sin γ)

+β̂(− cosh α sinβ cos γ + sinhα cos β sin γ)]. (17)

12Note that the origin is at (α, β) = (0, π/2), where cosh2 α− cos2 β = 1.
13General expressions for Laplace’s equation in curvilinear coordinate systems were first given in English

in [9].
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The total potential V = V0 + Vσ for the conducting elliptic cylinder in a uniform field,
where Vσ is the potential associated with the charges on the elliptic cylinder, can be taken
as zero inside the cylinder (α < α0), so

Vσ(α < α0) = −V0(α < α0) = −cE0(coshα cos β cos γ + sinhα sinβ sin γ) (conductor).(18)

The potential outside the cylinder (α > α0) is given by eq. (10.1.27) of [10] for ε → ∞,

Vσ(α > α0) = −cE0 eα0−α(coshα0 cosβ cos γ + sinhα0 sinβ sin γ) (conductor), (19)

such that the on the surface of the conducting elliptic cylinder, V (α0) = V0(α0)+Vσ(α0) = 0.
The exterior electric field components are,

Eσ,α(α > α0) = − 1

c
√

cosh2 α − cos2 β

∂Vσ

∂α
(conductor)

= − E0 eα0−α√
cosh2 α − cos2 β

(cosh α0 cos β cos γ + sinhα0 sin β sin γ), (20)

Eσ,β(α > α0) = − 1

c
√

cosh2 α − cos2 β

∂Vσ

∂β
(conductor)

=
E0 eα0−α√

cosh2 α − cos2 β
(− cosh α0 sinβ cos γ + sinhα0 cos β sin γ). (21)

At the surface of the conducting elliptic cylinder, α = α0, the β-components of E0 and Eσ

cancel, so the total field has only an α-component (which is perpendicular to the surface of
the conductor), as expected.14

For the steady-state with an insulating elliptic cylinder, we desire that the α-component
of the total field be zero at its surface, such that the field is parallel to the surface (i.e., has
only a β-component there). For this, a suitable exterior potential is,15

Vσ(α > α0) = cE0 eα0−α(sinh α0 cosβ cos γ + coshα0 sinβ sin γ) (insulator), (23)

which obeys ∇2Vσ = 0. The exterior electric field components are

Eσ,α(α > α0) =
E0 eα0−α√

cosh2 α − cos2 β
(sinhα0 cos β cos γ + cosh α0 sin β sin γ), (24)

Eσ,β(α > α0) = − E0 eα0−α√
cosh2 α − cos2 β

(− sinhα0 sinβ cos γ + coshα0 cosβ sin γ), (25)

14The total electric field E(α = α+
0 ) = E0(α+

0 ) + Eσ(α+
0 ) just outside the surface of the conductor, and

the surface-charge density σ, are, from eqs. (17) and (20)-(21), and recalling eq. (11),

Eα(α+
0 ) =

E0 e
α0 cos(β − γ)√

cosh2 α0 − cos2 β
=

(a+ b)E0 cos(β − γ)√
a2 sin2 β + b2 cos2 β

, Eβ(α+
0 ) = 0, σ = ε0Eα(α+

0 ). (22)

15The total exterior potential V = V0 + Vσ is given as the hydrodynamic potential ψ in eq. (10.1.28) of
[10], which is consistent with eq. (23).
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for which E0,α(α0) + Eσ,α(α0) = 0 as desired.
The total steady-state exterior field E = E0 + Eσ is illustrated in the figures below

(fig. 10.7 of [10], p. 94 of [13] and fig. 27 of [14]) for a nearly flat elliptic cylinder at 45◦ to
the external field E0.

We also need the potential and the fields inside the insulating cylinder. Recalling the
relation between the potentials (18) and (19), we infer that the extrapolation of the potential
(23) inside the insulator is

Vσ(α < α0) = cE0(sinh α cos β cos γ + cosh α sinβ sin γ) (insulator), (26)

which satisfies Laplace’s equation, and matches potential (23) at α = α0. The interior
electric field components associated with this potential are

Eσ,α(α < α0) = − E0√
cosh2 α − cos2 β

(cosh α cosβ cos γ + sinh α sin β sin γ), (27)

Eσ,β(α < α0) = − E0√
cosh2 α − cos2 β

(− sinh α sinβ cos γ + coshα cos β sin γ), (28)

The interior field (27)-(28) is independent of parameters α0 and c, i.e., independent of the
semimajor axis a and the semiminor axis b of the elliptic cylinder. Further, the total interior
field follows from eqs. (17) and (27)-(28) as

E(α < α0) = E0 + Eσ = − E0 eα√
cosh2 α − cos2 β

[α̂ cos(β − γ) − β̂ sin(β − γ)], (29)

E(α < α0) =
E0 eα√

cosh2 α − cos2 β
=

2E0√
1 − 2 e−2α cos 2β + e−4α

≈ 2E0. (30)

The field strength at the origin, (α, β) = (0, π/2), is just E0,
16 but away from the origin,

where e−2α � 1, the field strength is approximately 2E0.
17 Thus, the total, steady-state in-

terior field in the case of an insulating elliptical cylinder has magnitude ≈ 2E0 (as previously
found in sec. 2.2 for a circular cylinder), largely independent of the shape of the ellipse.

16While it is often said that a circle is an ellipse with zero focal distance, a circle has only one focus/center,
while an ellipse has 2 foci. So, no matter how close these two foci are to one another, there remains a
distinction between a nearly circular ellipse and a circle. Apparently, a consequence of this distinction is
that the mathematically exact, steady-state electric field at the center of a nearly circular insulating elliptic
cylinder (between its foci) is not the same as that at the center of an insulating circular cylinder. However,
at distances r from its center, where 2c <∼ r < a ≈ b in a nearly circular elliptic-cylinder insulator, the
steady-state field strength is ≈ 2E0, as for the steady state of circular-cylinder insulator.

17The field strength at the ends of the major axis, (α, β) = (α0, 0 or π), is 2E0/(1 − e−2α0 ) ≈ 2E0, and
the field strength at the ends of the minor axis, (α, β) = (α0, 0 or 3π/2), is 2E0/(1 + e−2α0 ) ≈ 2E0.
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That is, if the width of the insulator is small compared to the width (transverse extent)
of the external field E0, such that field lines can pass around the insulator as it charges up,
the field inside the insulator rises to only double the value of the external field.18 This is in
significant contrast to the case of the right figure of sec. 2.1, where the insulator has the same
(infinite) width as the external field, and so field lines could not “go around” the insulator
and the internal field of a thin insulator would become very large compared to E0.

2.5 Rectangular-Prism Insulator

We have seen that for elliptic-cylinder insulators, which have no sharp corners, the maximum
field inside the insulator in the steady-state after charge accumulation is only about twice
the external field, independent of the shape of the elliptic cylinder.

In some situations, prisms with rectangular cross section, say 2a × 2b with a > b are
reasonably well approximated by elliptic cylinders of semimajor axis a and semiminor axis b.
However, this seems not to be the case in the present problem. As shown in the figures below
from a finite-element analysis by Bo Yu [15], the peak, steady-state field inside a charged-up,
rectangular-prism insulator is ≈ E0a/b 	 2E0.

The figures indicate that the charging of the sharp corners of the insulator leads to closely
spaced equipotentials there, such that the total potential difference between the “top” and
“bottom” sides of the insulator is large (ΔV ≈ 70 kV in the example on the left above, and
≈ 26 kV on the right).

The lesson is that insulators, like conductors, in strong fields should not have sharp
corners. As seen in secs. 2.2-4, insulators with rounded cross sections have steady-state
internal fields of only ≈ 2E0.

Insulators in high-voltage applications are sometimes protected from effects of charge

18Even if the elliptic cylinder were aligned with its major axis parallel to the external field E0, the effect
of the charge accumulation, and of the field lines going around the cylinder, would be to raise the steady
state internal field to ≈ 2E0. This contrasts with the case shown in the middle figure on p. 1, where a planar
insulator fills the entire gap between the electrodes that generate the field E0, such that no field lines are
deformed, and the interior field remains E0 at all times.
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accumulation due to corona discharge by so-called grading rings.19 These are conductors
that surround a region of the insulator, creating an equipotential region in the plane of the
grading ring, which reduces the electric field near this plane almost to zero.

2.5.1 Conducting and Insulating Corners

An analytic treatment of the exterior solution for a rectangular conductor in an otherwise
uniform electric field seems not to be available. However, some insight can be obtained by
consideration of case of two intersecting, conducting planes, as in sec. 2.11 of [6], or p. 254
of [16].

We are interested in the case of planes that intersect at 90◦. Taking the line of intersection
to be the z-axis, and the conducting planes to line along the positive x-axis and the negative
y-axis, the opening angle for the exterior field is β = 3π/2 in the notation of [6]. The
potential near the corner is approximately,20

V (r, φ, z) ≈ A + Br2/3 sin 2φ/3 = Re(A − iBr2/3 e2iφ/3) = Re(A − iBz2/3), (31)

where A and B are constants, and z = x + iy = r eiφ. Hence, the conjugate potential,

V (r, φ, z) = Im(A − iBr2/3 e2iφ/3) = A − Br2/3 cos 2φ/3, (32)

is the (approximate) potential for another electrostatics problem.

The electric field lines for this new problem are identical with the equipotentials (and
vice versa) for the original problem of a conducting corner. From the figure above (p. 254
of [16]), we see that the potential (32) corresponds to an electric field that is parallel to the
surface of the corner, as desired for the steady-state of a charged, rectangular insulator.

For a rectangular insulator of dimensions 2a × 2b, the greatest electric field will be at its
center (x, y) = (a,−b) in the coordinate system used above. If we define the potential to be
zero on the midplane y = −b of the insulator, the potential will be symmetric in y about
this plane, and the peak field will be approximately Emax ≈ V (a, 0)/b.

For the potential to be zero at (x, y) = (0,−b); (r, φ) = (b, 3π/2) requires that A =
−B b2/3, such that Emax = −B(a2/3 + b2/3)/b. By dimensional analysis, B = −E0d

1/3 for

19See, for example, https://en.wikipedia.org/wiki/Corona_ring#Grading_rings
20See eq. (2.73) of [6].
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some relevant distance d(a, b), where E0 is the field in the absence of the insulator. If we
take d = a (which is only an “educated guess”), we obtain

Emax ≈ E0

[
a

b
+
(

a

b

)1/3
]
, (33)

in reasonable agreement with the numerical analysis [15] reported in the figure on p. 9 above.
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