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We would like to know how well we will be able
to constrain the parameters of sterile neutrino
oscillation with our detector setup.




Sensitivity Curves

The current state of the art in these studies
Involves comparing sample sterile neutrino
oscillation signals over a phase space of Am
and sin?(20) with a null hypothesis and
measuring our ability to resolve signal.
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e [nitialize and fill vectors

e Build covariance matrix

e Compare sample predicted signals with null
hypothesis

e Calculate X?values

e Draw beautiful plots




Shape Only Analysis

Nominal uncertainty matrix is created

by adding these three components. N v VN,
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Covariance Matrix

e Flux uncertainty matrix is built using:
M(i,j) = (Nom - Sys ). (Nom - Sysn)j

o 1i,] represent entries for each bin, separated by
detector
o Entries are averaged over N systematic fluctuations
e All entries are fractionalized and then normalized to null
hypothesis signal
e Statistical uncertainty added along the diagonal



X? Calculation

e Fill prediction matrix with oscillations for each Am?, sin?

(208) subtracted from null hypothesis.
e Compare each prediction to null hypothesis
e Find X?using:
X2 = (Enul/ B Epred)i Covij_1 (Enull ) Epred)j
e Space is covered with a 1-directional Raster scan and
contours are cut at 50 (X? < 25), 30 (X? < 9), and

90% (X? < 1.64) confidence levels.
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Signal Injection

Instead of comparing to a null hypothesis, we
would like to see how strongly we will be able
to constrain these parameters when faced with
a “real” signal.




Changes to X? Calculation

e \WVe create a signal vector by subtracting the predicted
oscillation for a set Am? and sin?(20) from the null
hypothesis.

e The prediction vector is created exactly as before, but
this time it is scaled to the injected signal in the near
detector. This gives a contribution to the X? of 0 in the
near detector, so all information comes from
MicroBooNE and T600

e Calculate X? as before using E  toreplace E_,



x10° x10°
C Prediction - A m?: 50.0, sin?(26): 0.05 350 Prediction - A m?: 50.0, sin’(26): 0.05
1800 v mode, CC Events C v mode, CC Events
- Statistical Uncertainty Only - Statistical Uncertainty Only
1600~ e 0% v, Effciency 300 e a0% v, Efficioncy
1400 C PRELIMINARY N PRELIMINARY
- 250
o0 Sl
24000 2008
né; NES *
150
3 800 3
600 [ | Prediction Vector || Prediction Vector
Signal Vector 100 Signal Vector
]
400 * Scaled Prediction * Scaled Prediction
200 LAr1-ND (100m) ﬂm 50  T-600 (600m)
0=%5 1 15 5 55 3 055 1 15 > 55
. . . . . 5 3
- 2 =02
sin ZOW sin 26“u

“Shape Only” Scaling of Prediction Vector




Next, we must find the best-fit point - where the
code thinks the signal is most likely to lie.

This is calculated by finding the point on the
plot of lowest XZ.
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Confidence Levels

Using the best fit, confidence contours are
created, placing a point on the plot at each
Am?, sin%(26) where we have:

AX® < >(2C.L ) XZBest Fit

For cleanliness, the code does not draw
jellybeans that touch at least three sides of the
plot.
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Too Good To Be True? Yes

From those plots, we see that the code nails
the best-fit exactly to the signal and that the
minimum X? is always O.

The signal and prediction vectors are all cut
from the same cloth - there will always be a
prediction to match the signal exactly, which is
very idealistic




To fix this, we need to fluctuate the signal to
simulate something the detectors may actually
find.

We build the signal vector just as before, but
then fluctuate it using a Poisson distribution.
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e With smearing, there is no longer a perfect match
for the best-fit point.

e The covariance matrix is built without any
assumptions about a signal (much like the real-life
case).

e After some signal is detected, we need to update
the matrix with the new information and run the X?
calculation again.




Covariance Matrix: part Il

e |nstead of scaling the flux uncertainty matrix
to a null hypothesis, it is scaled to the best-fit
signal.

e The X? values are calculated again with the
new covariance matrix

e This process is repeated until the change In
AX? is less than .002.
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Moving Forward

The code still has a few kinks to work out,
particularly with regards to stability of best-fit
point.

Even with iteration, it often fails to find the
signal exactly and since each run changes the
fluctuation, it provides a very different best-fit.
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Moving More Forward

A tech-note describing these studies is In
progress and will be available soon on the SBN
and MicroBooNE DocDBs.

Thanks All!



