Liquid Argon Time Projection Chambers:
U.S. R&D and Physics Program




Introduction

eLiquid Argon Time Projection Chambers (LArTPCs) continue to be an
exciting option for future detectors.

=»combines excellent spatial resolution and calorimetry.
*Pioneering LArTPC work done in Italy by ICARUS collaboration.
oU.S. efforts to develop LArTPCs have expanded significantly in recent years.
*Several R&D efforts ongoing in U.S.
*MicroBooNE is a new LArTPC experiment to begin operating ~201 .
eUltimate goal is to build a massive (100 kiloton) detector capable of
studying neutrino oscillations and searching for nucleon decay.

Recommendations from the Report of the P5
Panelto HEPAP, May 29, 2008:

“The panel recommends support for a vigorous R&D program on liquid argon detectors and
water Cerenkov detectors 1n any funding scenario considered by the panel. The panel
recommends designing the detector in a fashion that allows an evolving capability to measure
neutrino oscillations and to search for proton decays and supernovae neutrinos.”



ol ArTPC Basics
¢ Teststands in the U.S.

*The MicroBooNE Experiment

*Massive LArTPC Detectors

eConclusions




Ultimate Physics Goals

Accelerator Based

e Observe v,—V, transitions, measure 0,3
e Measure the CP-violating phase, dcp
e Determine Mass Hierarchy:
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Massive detector
Non Accelerator Based ,
*Proton Decay (e.g. - p—K*v,) required for much of

eSupernovae searches this physics....
*Solar neutrinos

“Nucleon Decay Searches with large Liquid Argon TPC Detectors at Shallow Depths: atmospheric neutrinos and cosmogenic backgrounds” - A. Bueno et. al, hep-ph/0701 101



Noble Liquids: Properties

*|onization and scintillation light used for detection (transparency to own scintillation).
*lonization electrons can be drifted over long distances in these liquids.

*Very good dielectric properties allow high-voltages in detector.

*Argon is cheap and easy to obtain (|% of atmosphere).
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Liquid Argon Detectors appear scalable to large sizes!
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LArTPC Principal

TPC =Time Projection Chamber

eInteractions inside TPC produce ionization particles that drift along electric field lines to readout planes.
*Knowledge of drift speed, and To of events, can be used to reconstruct interaction.
oScintillation light also present, can be collected by Photomultiplier Tubes.
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Optical Properties

*Argon in an excellent scintillator.

*|28nm light (need to wavelength shift to collect....)

*De-excitation and recombination processes following the passage of
ionizing particles in liquid Argon produce prompt scintillation radiation.
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LAr TPC Advantages

e/Y separation — reduced Vv, induced backgrounds (NC =)

*80% signal (CC v,) efficiency, ®96% background (NC 1° ) rejection
* Topological cuts will also improve signal/background separation
*PID from dE/dx (proton/pion/kaon/etc... separation)

Energy loss in the first 24mm of track: 250 MeV electrons vs. 250 MeV gammas
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LArTPC Challenges

*Purity level desired (ppt) is demanding.

» Necessary to achieve long-drift (>5m)
» Detector materials impact on purity must be understood.

*Safety issues (ODH hazards) when operating underground.
*Wire signals are small....electronics noise must be controlled.
*Vacuum/Cryogenic Environments take special care...

Current program of LArTPC development can address
many of these challenges!




3 ton prototype

1991-1995: First demonstration

of the LAr TPC on large masses.

Measurement of the TPC
performances. TMG doping.
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: —-- 1987: First LAr TPC. Proof of principle.
- Measurements of TPC performances.

50 litres prototype
1.4 m drift chamber

1997-1999: Neutrino beam
events measurements.
Readout electronics
optimization. MLPB
development and study.
1.4 m drift test.

1999-2000: Test of final industrial solutions for the
wire chamber mechanics and readout electronics.
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Liquid Argon in the U.S.

Rapid progress in LArTPC
development

100%
Physics
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Argon Purity

*To drift electrons through argon, impurities (Oxygen, Water, etc..) must be removed from delivered
LAr to increase ionization electron lifetimes.

*Pass LAr through filter(s) to remove contaminants.

*Purity monitors used to measure charge absorbed after drifting through argon.

*Fermilab group has done extensive work to develop new filters and purity monitors.
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Materials Test System at Fermilab

e e
Materials
Test System

p\(Q,o‘\

* A massive LArTPC will necessarily have large amounts of detector material, so
controlling argon purity is vital.

*MTS is used to study the impact of different materials on argon purity.

*This facility also has a TPC test system for electronics.



Materials Test System at Fermilab

Measurements with the
Materials Test System
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ArgoNeuT

A :. ~ J&

*ArgoNeuT is a ~175 liter LArTPC (jointly funded by NSF/DOE)
*Will sit in front of MINOS near detector in NuMI| beamline. Use MINOS as a range stack.

*Goals:
» Gain experience building/running LArTPCs.
» Accumulate a sample of 10000’s neutrino events.
» Confront many aspects of underground running and safety.
» Develop simulation of LArTPCs and compare with data.
» Measure CCQE cross-section

A'"gONeUT NuMI Beam NuMI Tunnel
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ArgoNeuT: Collaboration
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ArgoNeuT: TPC

|75 liter active volume, 480 channels of signal.

Collection, Induction?, planes. Induction| plane not read out.
4mm wire pitch, 4mm plane spacing.

500V/cm electric field.

Max. drift of ~50cm.
Bias voltage distribution boards located directly on TPC.

0.15mm diameter BeCu wire. Cu-clad G10 used for field cage.

Hl +60° wires

Wire Orientations




ArgoNeuT
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* Electronics for ArgoNeuT (480 channels)
— Bias voltage distribution & blocking on the TPC
— FET preamplifier similar to DO/ICARUS front-end
— Wide bandwidth filtering (10 - 200 kHz, now)

* Full information on most hits/tracks

'] Bias Voltage
| R&C

« Employ DSP to extract hit/track parameters
— ADF?2 card, sample at 5 MHz, 2048 samples/channel

— Minimize noise sources

Preamp &
filters

* Double shielding of feed-through and preamplifiers
* Remote ducted cooling

 Extensive DC power filtering

Custom power supply RF shielding &

ireami coolini



ArgoNeuT
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eArgoNeuT is just ending its commissioning run (~4 weeks above ground)
*We have collected many cosmic-ray events using a simple coincidence trigger.
*System has been very stable during this run!

*Plan to fix/upgrade a few items and begin move underground.
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ArgoNeuT: Simulation

® ArgoNeuT members (M.Antonello, B. Baller;Yale group, etc...) developing
GEANT3/4 simulations for LArTPCs

® Simulation is general purpose for future LArTPCs.

® (Goal is automated event reconstruction
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MicroBooNE

*MicroBooNE is a proposed Liquid Argon Time Projection Chamber (LArTPC) detector to run in
the on-axis Booster and off-axis NuMI beam on the surface at Fermilab.
*Combines timely physics with hardware R&D necessary for the evolution of LArTPCs.
» Cold Electronics
» Long Drift
» MiniBooNE excess
» Low-Energy Cross-Sections
petc...

Stage | approval from
Fermilab directorate in June!

= Joint NSF/DOE Project
=>NSF MRI for TPC and PMT systems
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MicroBooNE: Physics Goals

*Address the MiniBooNE low energy excess
eUtilize electron/gamma tag (using dE/dX information).
e ow Energy Cross-Section Measurements (NC 11°, A— Ny ,Kaon production, Photonuclear, ...)
®Use small (~500) sample of Kaons to study proton-decay sensitivity.

*Develop automated reconstruction.

Energy loss in the first 24mm of track: 250 MeV electrons vs. 250 MeV gammas
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MicroBooNE: Location

*MicroBooNE will sit on surface in on-axis Booster beam, and off-axis (LE) NuMI beam.
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MicroBooNE: Design

*Cryostat (170 Tons LAr) as large as can be commercially built offsite and delivered over the roads.
*Evacuable vessel with foam insulation.
*To sit on surface in on-axis Booster beam, off-axis NuMI beam.
*TPC parameters
» 70 Ton fiducial volume
»~2.5m drift (500V/cm) T
» 3 readout planes (£60° Induction, vertical Collection) A
» 10000 channels (using Cold Preamplifiers)
*30 PMTs for triggering
*Purification/Recirculation system.
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MicroBooNE: Hardware R&D

MicroBooNE will undertake R&D in two overlapping phases

*Phase |: Initial design relevant to MicroBooNE detector (previous slide).
*Phase 2: R&D for next generation LArTPCs

Cold Electronics: Next slide.

Purity Test: Purge vessel with argon gas, then fill with liquid, to see if high-purity liquid can be
achieved without initial evacuation. Very massive LArTPCs will most likely not be evacuable, so
purging will be necessary.

Long drift (2.5m): though not as long in massive LArTPCs, will test purity and reconstruction
schemes.

e Real data essential to understanding hardware performance!




MicroBooNE: Cold Electronics

*Preamps will be placed inside of cryostat.
*x3 better S/N compared with room temperature performance.
*Necessary step along the path to large detectors where signals must make long transits.
*Many future Hardware questions can be answered by MicroBooNE.
JFET/CMOS performance (~4 year development required for CMOS).

Maintaining purity with electronics inside tank.
Heat load due to power output of electronics in tank.

Multiplexing signals.
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MicroBooNE: Cold Electronics
Cryogenic Front-End based on on JFET

 Technology mature and available
as of today Late 80’s

— Reliability issues requires a careful
choice of component and high-
reliability assembly

— Ceramic hybrid with co-fired
traces and surface mount
components properly tested

« Several years of experience
 Helios-NA34:

— 576 preamplifiers

— Operations: 4 years, multiple

cool-downs
— Failure: 1
«  NA48S8: 2008

— Preamplifiers in LAr: 13,000
— Operated at very high voltage

— Failures: ~50 because of a HV
accident in 1998. Negligible
failures after that

— Always kept at cryogenic
temperature




MicroBooNE: Light Collection

30 PMT
*Most li

eCoated

of VUV light.

*Design work on Holder/geometry/feedthroughs/etc.. ongoing.
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MicroBooNE Cryogenics

*Preliminary studies have been performed to understand thermal load of system.

*~|6 inches (~40 cm) glass foam insulation
3.4kW total load (13W/m?)

*Temp. gradient <<0.IK - crucial to reducing track distortions.
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MicroBooNE:Wire Bias Voltage

*3 wireplanes act as an electrostatic grid.

* Transparency is a function of electric fields before/after each plane.
*Choose bias voltages to keep constant field up to first induction
plane, then maximum transparency between planes.

MicroBooNE bias
voltages:

V1 = -205V
V2 = 0V
V3 = 440V
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MicroBooNE Wire Properties

*BNL group has developed wire winding apparatus.

*Have studied properties of CuBe vs. gold-coated Stainless Steel wire.
* | kg tension — 7mm expansion (on 2.5m long wire)

*Wire contraction when cooled to 90K (and frame is at RT): 6.8mm
*Nominal tension ~ kg

l*‘_‘f

w

SS304V (Fort Wayne)

CuBe (Little Falls Alloy)

Young's modulus @ RT

170GPa

121GPa

Young’'s modulus @ LN2

183GPa

(8% increase)

136GPa

(12% increase)

Integral CTE 0.22% 0.29%
Tension increase due to ~750g ~730g
cooling

Max. tension with ~3kg ~2kg

termination




MicroBooNE:Wire Connections

*Wire connections from 3 wireplanes made in tight space
*Decoupling capacitors located on wireplane assembly.




Massive Detectors

eUltimate goal for this technology is a kiloTon class LArTPC located in a neutrino
beam at a far site.
*Several detector proposals have been made...
*Reminder: Main technical challenges
-Safety
-Readout (long wires = lots of noise)
-Long drift
-Purification of large quantity of argon (not in a vacuum environment)
-Surface cosmic ray rates
-Underground construction technique
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Massive Detectors

*Prefer to put this huge detector someplace very deep (e.g. - Homestake Mine in South

Dakota, Soudan Mine in Minnesota).

*Proposed Project X at Fermilab could send intense neutrino beam to this far-site location.
*Working groups already forming in U.S. to explore possibility of massive detector at DUSEL.

Deep Underground Science K
DUSEL and Engineering Laboratory at Homestake, SD (TP ?t, K~

General Homestake Mine
Development
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Layout of Mine in South Dakota

Recommendations from the Report of the P5 Panel

to HEPAP, May 29, 2008:

“The panel recommends proceeding now with an R&D program to design a multi-
megawatt proton source at Fermilab and a neutrino beamline to DUSEL and recommends

carrying out R&D in the technology for a large detector at DUSEL.”
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Massive Detector: Project X

* Tremendous sensitivity with large LArTPC and intense neutrino beam.
*Scenarios assume 3 years neutrino + 3 years antineutrino
*LArTPC Curves Assume:

*80% signal efficiency and 80% beam V. selection efficiency
eno NC 7% background and 5% systematic on background.
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DUSEL: Cavern Layout

Some of the considerations and studies that are needed are:

» Depth? 300 ft., 4850 ft., or in between?
» Proton Lifetime & Supernova Neutrinos : Can they be done at 300 feet? (Backgrounds?)
» Cost differential for different depths: Excavation cost, assembly cost differential , Safety issues, ....

22.5

16.5

Cavern/Cryostat designs are coupled



DUSEL: Assembly Underground

*Space Limitation — Excavation costs drive cavern size.
*Severe Access Limitation

Elevator Capacity (~6 tons)
Limited Elevator Volume (1.4x3.7x2.2m)

eLimited Infrastructure (Machine shops, parts, etc...)
*Cryostat assembly impact on purity needs to be understood
(i.e. - welding cryostat together piece by piece...)

*A very large ship in a very large bottle...

Need for a strong engineering team to fold these constrains in to
the detector/cavern design from the start.



DUSEL: LAr Supply System

LAR SUPPLY
Procedure to supply the LAr. e e e
ISSUGS: . | — | Pume
i.Cleanliness of the supply system. -
i. Ability to evacuate LAr (Accident) '
ii. Acceptance tests for LAr delivery. =
iv.51ze and location of Buffer tanks. —

v# of buffer tanks underground.
vi.Location and size the purifiers.
vii.Cold pipe from the surface.

PURIFIER "CONTROLLED"
Dump

PURIFIE
le-\
/ —1\

S | |

ACCESS TUNNEL:

Example of cavern arrangement
and liquid supply paths
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Conclusions

*Much activity in U.S. to develop LArTPC technology.

*Materials Test Stand is an excellent resource for approving materials
for use in future experiments.

*ArgoNeuT is current step for LArTPCs in U.S.; will collect 10000’s of
events!

*MicroBooNE is next major effort in U.S,, and it will teach us many
things we need to understand before attempting to build a massive
detector that can be used to study neutrino oscillations and nucleon
decay.

*LAr collaboration for a massive detector is being discussed and
preliminary meetings are starting to take place.
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ArgoNeuT: Cryogenics

Self-contained system. Cryocooler

"
.
"
.
.
‘a
.
.
e,
.
.
“a
.
a
.
-
"

LI
e
*a
LI
e

300W Crocooler

Vacuum-Jacketed Cryostat



ArgoNeuT: Underground

Many safety issues addressed to prepare for move
underground and maintain ODH-0 rating of NuMI tunnel:

*ArgoNeuT sits in a bathtub, which acts as tertiary containment in case both cryostats fail.
*Relief piping is routed to vent line (runs up and out shaft), to ensure no argon released in tunnel.
*2 ODH monitors to alarm if leak is detected.

*Slow control system mirrored on screens in tunnel and surface building, and online, to alert of
any ODH hazards before entering tunnel.

Vent Line

__ MINOS
near-detector

Bathtub

ArgoNeuT under construction this summer.




