
GPS

 Bc637PCIe (GPS)
One of the most used GPS functionality

is the possibility of synchronization.
 Synchronization of the system clock

with UTC (it is possible and quite
easy to create NTP or PTP server)

 Use interrupts to execute a code
periodically (see next slides)

Friday, September 21, 2012

Synchronization in MicroBoone
In MicroBoone experiment the data are acquired in

frames. Frames are 1.6 msec long with data sampled
at 2MHz. But the DAQ clock runs at a frequency of 16
MHz.

We need to know the GPS time corresponding to the
frame number NOW.

The effect is that we have in memory a 3-column table
of GPS time, DAQ Clock Time, Frame Number, as
many rows as seconds that we want to keep in a
circular buffer.

Friday, September 21, 2012

What is an interrupt?

Interrupt is "the forced suspension of a
program in execution, in order to run a
routine associated to the event that have
generated the interrupt"

let's try to express it more clearly

Friday, September 21, 2012

Type of interrupt

There are three types of interrupts:
•External
•Hardware
•Software (Supervisor Call)

Only External interrupts are interesting for
our purpose, then I will talk only about this
type of interrupts.

Friday, September 21, 2012

External Interruputs

This interrupts are associated with event
that occurs outside CPUs.

More concretely an events it is represented by a
rising edge of an input signal.

In our application it corresponds with the pps
signal that GPS card generates on PCI bus (it is
a little bit more complex in reality)

Friday, September 21, 2012

Interruption management flow

Friday, September 21, 2012

Interrupts are very
useful for device
management and this
mechanism is the most
used by modern
operating systems(e.g.
keyboard, mouse,
screen are managed in
this way).
For example they allow
to avoid busy waiting.

Why interrupts?

Friday, September 21, 2012

Interrupt + GPS

 As we have already said GPS generate
a periodic signal that is called Pulse
Per Second

 It is possible to see this signal as an
event, and to associate to it an
appropriate routine.

Friday, September 21, 2012

Interrupt + GPS 2

 In this way we can obtain a periodic
routine, with a period accurate at
nanoseconds

 It is possible to implements periodic
routine also using timer (I've done it in
the consumer, see later)

Friday, September 21, 2012

Difference PPS/Timer
 There are two important advantages in

use PPS+interrupts implementation
 PPS is strongly more accurate than

Timer
 PPS is Synchronized with

Coordinated Universal Time.
Therefore, for example, two different
hosts, using PPS, execute their
routine at the same time.

Friday, September 21, 2012

My codes
I've wrote some sample codes that

implement this mechanism, called
fancifully:

 GPS_1
 GPS_1_5
 GPS_2
 connection_control

Friday, September 21, 2012

GPS_1

This code include a main that sets up the
card and the OS Interrupt table, and an
interrupt routine, associated with PPS
event, that reads directly time and print
it.

The role of this is just demonstrate how
to write and set a periodic PPS code.

Friday, September 21, 2012

GPS_1 code: main

Main calls initialization functions and wait:
 bcStartPci(); sets and starts the device
 pci_set_ints(hBC_PCI); sets Interrupt

Descriptor Table placing handler routine in
it (bcStartIntEx(hBC_PCI,
bcIntHandlerRoutine, INTERRUPT_1PPS
& 0x7F))

Friday, September 21, 2012

GPS_1 code: interrupt

Interrupt code:
 //Get current time
 // bcReadDecTimeEx is a library function that reads current time
 bcReadDecTimeEx (hBC_PCI, &dectime, &min, &nano, &stat);

 //Print time read
 printf("pps_routine: %02d:%02d:%02d.%06lu%d \n",
 dectime.tm_hour, dectime.tm_min, dectime.tm_sec, min,

nano);

Friday, September 21, 2012

This output demostrate that:
–Routine occours each second
–Time is captured with a
random delay, due by the
execution of software between
interrupt signal and data
acquisition.

GPS_1 output
OUTPUT:
...
bcIntHandlerRoutine
pps_routine: 80:156:66.0040402
bcIntHandlerRoutine
pps_routine: 80:156:67.0140657
bcIntHandlerRoutine
pps_routine: 80:156:68.0030917
bcIntHandlerRoutine
pps_routine: 80:156:69.0041193
bcIntHandlerRoutine
pps_routine: 80:156:70.0041424
bcIntHandlerRoutine
pps_routine: 80:156:71.0041674
bcIntHandlerRoutine
pps_routine: 80:156:72.0141917
bcIntHandlerRoutine
pps_routine: 80:156:73.0052188
bcIntHandlerRoutine
pps_routine: 80:156:74.0032431
bcIntHandlerRoutine
pps_routine: 80:156:75.0032680
bcIntHandlerRoutine
pps_routine: 80:156:76.0022934
...

Friday, September 21, 2012

GPS_1_5
This code is similar to the previous

(GPS_1). The difference lies in how the
current time is obtained: in this new
implementation we use event register,
latching (on hardware level) the time in
which PPS arrives in it.

This code demostrate how to latch an
event (that could be different from PPS)
time

Friday, September 21, 2012

Code differences
between 1 and 1_5

Into main I need to setup event register:
 iVal=1;

 EvDat.evtsrc = (BYTE)iVal;

 EvDat.evtctl = (BYTE)iVal;

 iVal=0;

 EvDat.evtlock = (BYTE)iVal;

 EvDat.evtsense = (BYTE)iVal;

 bcSetEventsData (hBC_PCI, &EvDat);

Into interrupt routine I only need to take time with
another function:

bcReadEventTimeEx (hBC_PCI, &evtmaj, &evtmin, &evtnano, &stat);

Friday, September 21, 2012

GPS_1_5 output
OUTPUT:
...
Time: 09/13/2012 17:01:07.0000000 Status: 7
Time: 09/13/2012 17:01:08.0000000 Status: 7
Time: 09/13/2012 17:01:09.0000000 Status: 7
Time: 09/13/2012 17:01:10.0000000 Status: 7
Time: 09/13/2012 17:01:11.0000000 Status: 7
Time: 09/13/2012 17:01:12.0000000 Status: 7
Time: 09/13/2012 17:01:13.0000000 Status: 7
Time: 09/13/2012 17:01:14.0000000 Status: 7
Time: 09/13/2012 17:01:15.0000000 Status: 7
Time: 09/13/2012 17:01:16.0000000 Status: 7
Time: 09/13/2012 17:01:17.0000000 Status: 7
...

N.B.:This output does
not demonstrate
anything about
precision of GPS: This
is GPS time, and not
UTC time. Then is
obvious that GPS
says that signal, that it
thinks to generate
each second, has a
infinite precision.

Friday, September 21, 2012

GPS_2

This code evolves GPS_1 (it doesn't use
event register), implementing the
classic paradigm of communication
Producer-Consumer, where producer is
the interrupt and consumer is a stand-
alone thread. The shared information is
the number of PPS that are arrived.

Friday, September 21, 2012

Shared memory
 In computing, shared memory is

memory that may be simultaneously
accessed by multiple programs with an
intent to provide communication among
them.

 Linux permits a controlled use of
shared memory, showing it like a device
called shm.

Friday, September 21, 2012

GPS_2 code
Producer(interrupt):

 //each time I need to get shared

//address

memory_loc_key = ftok(".",'M');

 if((id = shmget(memory_loc_key,
sizeof(long int), 0666))<0){/*...*/ }

 shm_ptr = shmat (id,NULL,0);

 if((int)shm_ptr == -1){...}

 //increment pps_counter

 (*((long int*)shm_ptr))++;

Consumer(thread):
//get shared address (one time)

memory_loc_key = ftok(".",'M');

 if((id = shmget(memory_loc_key, sizeof
(long int), 0666))<0){/*...*/ }

 shm_ptr = shmat (id,NULL,0);

 if((int)shm_ptr == -1){...}

 [...]
 While(1){

 //use data

 printf("I'm the consumer!: %ld \n", *((long
int*)shm_ptr));

 /*wait 0.5 sec*/

 }

Friday, September 21, 2012

GPS_2 output
...
bcIntHandlerRoutine
I'm the consumer!: 2926
I'm the consumer!: 2926
pps_routine: 87:144:244.0059356
bcIntHandlerRoutine
I'm the consumer!: 2927
I'm the consumer!: 2927
pps_routine: 87:144:245.0039618
bcIntHandlerRoutine
I'm the consumer!: 2928
I'm the consumer!: 2928
pps_routine: 87:144:246.0059860
bcIntHandlerRoutine
I'm the consumer!: 2929
I'm the consumer!: 2929
pps_routine: 87:144:247.0030130
...

Friday, September 21, 2012

connection_control

This simple code periodically (about 4
sec) requires packet46 to GPS card,
and reads in it information about status
of connection. Then it prints a message
describing this status.

Friday, September 21, 2012

This output was taken
when the antenna
was disconnected.

connection_control output

...
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
...

Friday, September 21, 2012

Conclusions

The codes that I've briefly explained are
simply sample codes, and they try to
show functionalities. It would be simple
to modify them, in order to satisfy the
various needs.

Friday, September 21, 2012

