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• Booster Neutrino Beamline at Fermilab 

• The MicroBooNE neutrino detector 

• Scintillation light and photomultipliers 

• Photomultiplier tube (PMT) testing 

• results I: room temperature 

• results II: performance in liquid nitrogen 
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MicroBooNE 

• MicroBooNE: 170 t LArTPC 
in Booster Neutrino Beam 

• investigate MiniBooNE low-
energy excess; measure 
BNB-energy cross-sections 

• detector R&D for upscaling 
LArTPCs 

• to be housed in LArTF 
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Regina Rameika, MicroBooNE Project Manager 

at LArTF groundbreaking January 23 2012 



Booster Neutrino Beam (BNB) 

• low energy (spectrum peaks around 1 GeV) 
neutrino beam line 

• start with protons from Fermilab Booster 
(8 GeV); impinge on Be target inside magnetic 
focusing device (“horn”) to sign-select 2ndaries 

• positive 2ndaries decay to neutrinos (π+→μ+νμ) 
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B 

BNB magnetic horn 



MicroBooNE 

• active detector: 
serves both as 
interaction 
target and 
charged debris 
tracker / 
identifier 

• filled with 170 
tons of liquid 
argon  
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MicroBooNE 

• Liquid argon 
time projection 
chamber 
(LArTPC): 
measure particle 
direction and 
energy (by 
ionization loss) 
 particle ID  
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MicroBooNE 

• LAr produces 6000 
scintillation (UV) 
photons/MeV 
deposited 

• wave-shifted (via 
TPB plate) 
scintillation light 
detected by 
photomultiplier 
tube (PMT) array 

    measure of 
event time, energy 
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PMTs 

scintillation 
photons 
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PMT fundamentals 

• photomultiplier 
tubes are light-
sensitive detectors 
that use the 
photoelectric effect 
to generate 
measurable 
electrical signals 
from small numbers 
of photons 
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current signal out 

Hamamatsu R5912-02 MOD 
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photocathode 

borosilicate 
glass 

envelope 

HIGH 
VOLTAGE 

first dynode 
in chain 

– HV 

+ HV 

PMT fundamentals 

• Photon strikes 
photocathode  
electron emission 
 accelerated to 
first dynode by HV 
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photocathode 

borosilicate 
glass 

envelope 

– HV 

+ HV 

PMT fundamentals 

• Photon hitting 
photocathode  
electron emission 
 accelerated to 
first dynode by HV 

 

• Magnetic field can 
deflect electron  
miss first dynode 

 

HIGH 
VOLTAGE 



test stand design 

• tube is very light-sensitive: need light-tight 
enclosure with capability for LN2 immersion 

• examine impact of geomagnetic fields on PMT 
performance by 
– exposing PMT to short bursts of very low intensity 

light (from LED) presented to tube via optical fiber 

– measure integrated charge output (Q) for PMT 
pulses in coincidence with LED pulse 

– rotate tube + fiber (with and without shield), and 
measure change in Q as rotation angle changes 
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Diagram: C. Kendziora 
Rotator fabrication 
completed  6/25/2010 

NOTE: (“pitch”) 
rotation occurs 
out of plane of 
drawing, 
NOT around the 
cylinder axis of 
symmetry  
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magnetic shield 

PMT 
optical fiber 

rotator axis 
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block diagram 

LED box 

fiber dewar 

PMT 

trigger in 

rotator 

light transport 
fiber is fixed 

relative to PMT 
and rotates with it 

pulser 

delay 
(>200ns)  
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integrated Q – variation w/ angle? 
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rotator angle 

fractional deviation from mean vs angle -- room temp measurements 

no shield room temp 

Cryoperm 10 room temp 

A4K room temp 
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conclusions 

• this work is one of the first demonstrations of 
cryogenic magnetic shielding for large 
diameter PMTs 

 

• to the extent this apparatus is able to 
measure, these shields effectively remove the 
performance change caused by geomagnetic 
fields 

Atlanta APS/DPF 23 



next steps 

• investigate (Monte Carlo) potential wave-
shifter plate shadowing by shield 

• for completeness (final report) 

– repeat tests with second tube 

– check effect with room temperature shield 
(Amumetal) 
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Thank you very much. 
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