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Introduction

‣ Neutrino physics
• Oscillations refresher

‣ MINOS experiment
• NuMI neutrino beam

• MINOS detectors

‣ Neutrino and antineutrino oscillation analyses
‣ Results
‣ Other analyses: νe, NC, cross sections, 

atmospherics…
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Neutrinos Mix 

‣ Neutrino flavor eigenstates are mixtures of mass eigenstates.
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‣ Flavor eigenstate: Neutrino born with 
charged lepton of a given flavor.

‣ Mass eigenstate: Neutrino of definite 
mass (Tom, Dick, Harry).
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Neutrinos Mix

‣ With three active neutrinos there 
are two independent mass 
splittings

‣ MINOS is sensitive to the larger of 
the mass splittings and θ23
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Two Flavor Oscillations
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Survival Probability
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‣ Make a beam of neutrinos.
• With a reasonably peaked, well understood energy 

distribution.

‣ Build at least one detector, ideally two.
• One detector at distance = L.
• One detector at distance = 0.

‣ Determine L and E.
• Larger things are easier to measure, maximize 

disappearance – build detector at dip. 
• Also bear in mind the cost and flux. Build it at the first 

dip.

‣ Pick your favorite Greek god.

Measuring Neutrino Oscillations
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‣ Three components:

• NuMI high-intensity neutrino beam

• Near Detector at Fermilab

• Far Detector in Soudan, MN
‣ Measure oscillations by looking for 

disappearance between the detectors
‣ Detectors are magnetized – unique 

among oscillation experiments

10 km

12 km
735 km

Fermilab Soudan

MINOS
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Making a neutrino beam
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‣ Production
• bombard graphite target with 120 GeV p+ from Main Injector

- 2 interaction lengths

- 310 kW typical power

• produce hadrons, mostly π and K
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Making a neutrino beam
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‣ Focusing
• hadrons focused by 2 magnetic focusing horns
• sign selected hadrons

- forward current, (+) for standard neutrino beam runs

- reverse current, (–) for anti-neutrino beam
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Making a neutrino beam
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‣ Decay
• 2 m diameter decay pipe
• result: wide band beam, peak determined by target/horn separation

• secondary beam monitored
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Making a neutrino beam
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NuMI is Versatile
‣ Just as we can make a neutrino beam, we can make an 

antineutrino beam by reversing the horn current.
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Monte Carlo!

Neutrino mode!
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NuMI is Versatile

‣ We can adjust the 
peak energy by moving 
the target wrt to the 
horns
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‣ Or we can turn off the horns altogether...
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‣ Make a beam of neutrinos.
• With a reasonably peaked, well understood energy 

distribution.

‣ Build at least one detector, ideally two.
• One detector at distance = L.
• One detector at distance = 0.

‣ Determine L and E.
• Larger things are easier to measure, maximize 

disappearance – build detector at dip. 
• Also bear in mind the cost and flux. Build it at the first 

dip.

‣ Pick your favorite Greek god.

Measuring Neutrino Oscillations
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5.4 kt Far Detector—
look for changes in the beam 
relative to the Near Detector

1 kt Near Detector—
measure beam
before 
oscillations

Magnetized, tracking 
calorimeters

735 km from 
source

1 km from source 17

The Detectors
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‣ Tracking sampling calorimeters
• steel absorber 2.54 cm thick (1.4 X0)

• scintillator strips 4.1 cm wide 

• 1 GeV muons penetrate 28 layers

‣ Magnetized
• muon energy from range/curvature

• distinguish μ+ from μ-

‣ Functionally equivalent
• same segmentation 

• same materials

• same mean B field (1.3 T)
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Detector Technology
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+
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νμ CC Event NC Eventνμ̅ CC Event

Simulated Events 19

Events at the Detectors

µ- µ+ ν 

Coil Coil
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‣ Make a beam of neutrinos.
• With a reasonably peaked, well understood energy 

distribution.

‣ Build at least one detector, ideally two.
• One detector at distance = L.
• One detector at distance = 0.

‣ Determine L and E.
• Larger things are easier to measure, maximize 

disappearance – build detector at dip. 
• Also bear in mind the cost and flux. Build it at the first 

dip.

‣ Pick your favorite Greek god.

Measuring Neutrino Oscillations
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Unoscillated

Oscillated

Monte Carlo

  νμ spectrum spectrum ratio

Monte Carlo
sin22θ = 1.0,  Δm2 = 3.35x10-3 eV2 

Characteristic 
Shape

Monte Carlo
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Measuring Oscillations
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Measuring Oscillations

sin2(2θ)



7/22/2010 Zeynep Isvan - NeutU 2010

Unoscillated
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Measuring Oscillations

Δm2
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The Analyses
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‣ Select (anti)neutrino events in the detectors

‣ Measure their energies to produce Near and Far detector 
spectra

‣ Use the Near Detector spectrum to predict the Far 
Detector spectrum independent of oscillations 

‣ Fit the Far Detector data to measure oscillations

25

Oscillation Analysis in Brief
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‣ Basic selection
• In-time with the spill
• In the fiducial volume
• At least 1 reconstructed track

‣ CC/NC separation using a 
kNN algorithm
• Compare to monte carlo 

events

‣ 4-parameter comparison
• Track length
• Mean energy of track hits
• Energy fluctuations along the 

track
• Transverse track profile

k-Nearest Neighbors
“kNN”

26

Selection
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‣ Basic selection
• In-time with the spill
• In the fiducial volume
• At least 1 reconstructed 

track

‣ CC/NC separation 
using a kNN algorithm
• Compare to monte carlo 

events

‣ 4-parameter 
comparison
• Track length
• Mean energy of track hits
• Energy fluctuations along 
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‣ Basic selection
• In-time with the spill
• In the fiducial volume
• At least 1 reconstructed 

track

‣ CC/NC separation 
using a kNN algorithm
• Compare to monte carlo 

events

‣ 4-parameter 
comparison
• Track length
• Mean energy of track hits
• Energy fluctuations along 

the track
• Transverse track profile
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Selection

Main Selector
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31

Monte Carlo
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Neutrino Selection Efficiency
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‣ Accept only events with positive reconstructed charge

‣ Use the Main CC/NC Selector from the neutrino analysis
• Removes NC and high-y CC interactions

‣ Data/MC agreement comparable to that seen for 
neutrinos.

AcceptAccept

Main Selector

30

Antineutrino Selection
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High energy νμ contamination does not  affect the oscillation result

33

Monte Carlo

31

Antineutrino Efficiency
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‣ Select (anti)neutrino events in the detectors

‣ Measure their energies to produce Near and Far detector 
spectra

‣ Use the Near Detector spectrum to predict the Far 
Detector spectrum independent of oscillations 

‣ Fit the Far Detector data to measure oscillations

32

Oscillation Analysis in Brief
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‣ Neutrino mode
‣ Most of our data taken in Low 

Energy configuration
‣ High energy beam to give events 

above oscillation dip

• Antineutrino mode
• Flux and cross section uncertainties 

cancel when extrapolated from Near 
to Far detector.

33

Near Detector Energy Spectra
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‣ Select (anti)neutrino events in the detectors

‣ Measure their energies to produce Near and Far detector 
spectra

‣ Use the Near Detector spectrum to predict the Far 
Detector spectrum independent of oscillations 

‣ Fit the Far Detector data to measure oscillations
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Oscillation Analysis in Brief
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‣ Neutrino energy depends on angle wrt original pion 
direction and parent energy
• higher energy pions decay further along decay pipe
• angular distributions different between Near and Far 

Far spectrum without oscillations is similar, but not 
identical to the Near spectrum!
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Near to Far Extrapolation
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‣ A beam matrix extrapolates measured Near spectrum to Far
‣ Matrix encapsulates knowledge of meson decay kinematics and 

beamline geometry
• Matrix element Mij reflects the probability of obtaining a Far event with 

energy Ej given the observation of a Near event with energy Ei

‣ MC used to correct for energy smearing and acceptance

Monte Carlo
36

Beam Matrix Extrapolation
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‣ Select (anti)neutrino events in the detectors

‣ Measure their energies to produce Near and Far detector 
spectra

‣ Use the Near Detector spectrum to predict the Far 
Detector spectrum independent of oscillations 

‣ Fit the Far Detector data to measure oscillations
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Oscillation Analysis in Brief
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Monte Carlo
38

Systematic Uncertainties
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Far Detector Neutrino Data

39
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Δmatm
2 = 2.35−0.08

+0.11 ×10−3  eV2

sin2 2θ23( ) =1

sin2 2θ23( ) > 0.91 (90% C.L.)

‣ 2,451 expected without oscillations

‣ 1,986 observed events
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Δm atm
2 = 3.36−0.40

+0.45 ×10−3  eV2

sin2 2θ 23( ) = 0.86 ± 0.11

‣ 155 expected 
without 
oscillations

‣  97 observed 
events

No-oscillations 
hypothesis is 
disfavored at 6.3σ
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Neutrinos and Antineutrinos
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Δm atm
2 = 3.36−0.40

+0.45 ×10−3  eV2

sin2 2θ 23( ) = 0.86 ± 0.11
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Δmatm
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+0.11 ×10−3  eV2

sin2 2θ23( ) > 0.91 (90% C.L.)
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With More Antineutrinos…

‣ Even just another 4.5 months of running (double the current 
data set) would decrease the error by ~30%.
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Conclusions

‣ MINOS has the most precise measurement of |Δm2
atm| 

‣ MINOS has the first direct, precision measurement |Δm ̅2atm|

‣ With more antineutrino beam we can rapidly improve the 
precision on the antineutrino oscillation parameters

€ 

Δm atm
2 = 3.36−0.40

+0.45 ×10−3  eV2

sin2 2θ 23( ) = 0.86 ± 0.11

€ 

Δmatm
2 = 2.35−0.08

+0.11 ×10−3  eV2

sin2 2θ23( ) > 0.91 (at 90%)
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‣ Talked about:

• Measurements of |Δm2
atm| and sin2(2θ23) 

via νμ disappearance

• Measurements of |Δm ̅2atm| and sin2(2θ̅23) 
via νμ̅ disappearance

‣ Didn’t have time for:

• Search for sub-dominant νμ  νe 
oscillations via νe appearance

• Search for sterile ν

• Atmospheric neutrino and cosmic ray 
physics

• Study ν interactions and cross sections in 
Near Detector

44

MINOS Physics
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MINOS Physics
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‣ Hadron production and cross sections conspire to change 
the shape and normalization of energy spectrum

~3x fewer antineutrinos for the same 
exposure

Making an antineutrino beam
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Peak vs. Tail

Target Focusing Horns
2 m

675 m15 m 30 m

‣ νμ̅’s from high-pt 

π-’s
• Focused by horns

‣ νμ’s from low-pt π
+’s

• Pass through horn 
center

120 GeV 
protons 
from MI

Decay Pipe

Monte 
Carlo

Focused

Monte 
Carlo

Unfocused

π
+

π- νµ

νµ
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Neutrino mode
Horns focus π+, K+

€ 

νµ = 91.7%
ν µ = 7.0%

νe +ν e =1.3%

Monte Carlo
Antineutrino mode
Horns focus π-, K-

€ 

ν µ = 39.9%
νµ = 58.1%

νe +ν e = 2.0%

Peak vs. Tail

‣ νμ̅’s from low-pt π-’s
• Focused by horns

‣ νμ’s from high-pt π
+’s

• Pass through horn 
center

Monte 
Carlo

Focused

Monte 
Carlo

Unfocused

Monte Carlo
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Neutrino Contour by Run

MINOS 
Preliminary
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Antineutrino Contour

€ 

Δm atm
2 = 3.36−0.40

+0.45 ×10−3  eV2

sin2 2θ 23( ) = 0.86 ± 0.11

A combined analysis 
using all antineutrino 

data is planned.
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